
08.09.12 marklio - What is useLegacyV2RuntimeActivationPolicy for?

1/4www.marklio.com/marklio/PermaLink,guid,ecc34c3c-be44-4422-86b7-900900e451f9.aspx

Navigation

Home

dasBlog

CodePlex

newtelligence AG

 |

On this page

What is
useLegacyV2RuntimeActivationPolicy
for?

Archive

< September 2012>

Mo Di Mi Do Fr Sa So

27 28 29 30 31 1 2

3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

1 2 3 4 5 6 7

April, 2010 (1)

März, 2010 (1)

Mai, 2009 (1)

Dezember, 2008 (2)

November, 2008 (1)

Oktober, 2008 (1)

September, 2008 (1)

Juli, 2008 (1)

Juni, 2008 (2)

Mai, 2008 (1)

April, 2008 (2)

Februar, 2008 (3)

Januar, 2008 (2)

 Freitag, 12. März 2010

What is useLegacyV2RuntimeActivationPolicy for?

This post is intended to fill a gap in the current MSDN documentation for this

attribute (http://msdn.microsoft.com/en-

us/library/bbx34a2h(VS.100).aspx). This gap should be filled by the time .NET

4 ships.

There is alot of confusion about what the useLegacyV2RuntimeActivationPolicy

attribute does. Most often, it is used to allow a pre-v4 mixed-mode assembly to

load in v4. In that context, the name makes very little sense. Below is an

explanation I’ve provided to people internally that explains the attribute in the

context for which it was named. This should give people a better idea of what it

does, as well as understand some of the subtlies of in-proc SxS.

Ultimately, this attribute has to do with the behavior of the “legacy shim APIs”. You

can think of these as encompassing several categories of CLR activation:

CorBindToRuntimeEx and friends - This includes most of the flat exports of

mscoree.dll defined in mscoree.h (GetCORSystemDirectory, GetCORVersion,

LoadLibraryShim, etc). Note, this also includes the strong name APIs defined

in strongname.h)

Pre-v4 COM activation – This includes CoCreateInstance of a CLSID (or type

identifier) whose latest registration is against a pre-v4 runtime version. Note

this includes both the “new” operator on such a co-class from managed

code, or the result of Activator.CreateInstance against a type created by

Type.GetTypeFromCLSID on such a CLSID.

Pre-v4 IJW (mixed mode) activation – For example, calling into a native

export on such an assembly

Native activation of a native runtime-provided COM CLSID – Such as

CoCreateInstance on ICLRRuntimeHost’s CLSID

Native activation of a managed framework CLSID – Such as

CoCreateInstance on System.ArrayList’s CLSID (extremely rare)

All these have a “single runtime per process” view of the world, so we try to make

those codepaths believe they still exist in that world by “unifying” the version that

they see. After a given version has been chosen by one of these codepaths, that’s

the version that all of them see for the remainder of the process lifetime.

Additionally, all of these activation paths had some kind of roll-forward semantics

associated with them. We “cap” those semantics at v2, meaning by default none of

these codepaths see v4 at all. This allows us to claim that installing v4 is “non-

impactful”. It should not change the behavior of existing components when

installed. (Note that this has the interesting side-effect of a v4 only machine

appearing to have no runtimes installed at all via these codepaths.)

This is all well and good until someone WANTS those codepaths to see v4. Rolling

a v2 managed app forward to v4 using a config (without the attribute) works just

fine, unless that app also expects interaction with these “legacy” codepaths to be

associated with the current runtime (v4). For instance, a p/Invoke to

GetCorSystemDirectory in order to construct a path to Fusion.dll (please don’t do

that, BTW) will give you v2’s fusion.dll. COM activation of a managed COM object

08.09.12 marklio - What is useLegacyV2RuntimeActivationPolicy for?

2/4www.marklio.com/marklio/PermaLink,guid,ecc34c3c-be44-4422-86b7-900900e451f9.aspx

Januar, 2008 (2)

Dezember, 2007 (3)

November, 2007 (1)

Oktober, 2007 (2)

September, 2007 (2)

August, 2007 (4)

Juli, 2007 (5)

Juni, 2007 (3)

Mai, 2007 (5)

April, 2007 (4)

März, 2007 (5)

Februar, 2007 (6)

Januar, 2007 (7)

Dezember, 2006 (6)

November, 2006 (8)

Oktober, 2006 (10)

September, 2006
(13)

August, 2006 (16)

Juli, 2006 (3)

Juni, 2006 (4)

Mai, 2006 (8)

April, 2006 (4)

März, 2006 (1)

Februar, 2006 (3)

Januar, 2006 (10)

Dezember, 2005
(10)

November, 2005
(11)

Oktober, 2005 (8)

September, 2005 (3)

August, 2005 (11)

Juli, 2005 (4)

Juni, 2005 (9)

Mai, 2005 (6)

April, 2005 (15)

März, 2005 (9)

Februar, 2005 (18)

Januar, 2005 (18)

Dezember, 2004
(16)

November, 2004
(14)

Oktober, 2004 (10)

September, 2004 (6)

August, 2004 (14)

Juli, 2004 (17)

Juni, 2004 (11)

Mai, 2004 (22)

April, 2004 (17)

März, 2004 (17)

will prefer the runtime it was built against rather than load into the current runtime

(meaning you may be dealing with interop rather than a concrete CLR type). That

may work, and it may not, depending on what you’re doing.

The useLegacyV2RuntimeActivationPolicy attribute basically lets you say, “I have

some dependencies on the legacy shim APIs. Please make them work the way they

used to with respect to the chosen runtime.” In that context, hopefully the name

makes more sense to you. It is *mostly* equivalent to calling CorBindToRuntimeEx

using the full version string for v4. We also have a method in our new shim APIs

to do this programmatically, the difference being that in a config file, it can be done

declaratively, which is useful for a host that uses config files to determine which

runtime to load plugins into. (the attributes value (or lack of value) is conveyed back

to a host via the pdwConfigFlags parameter of

ICLRMetaHostPolicy::GetRequestedRuntime)

One of the big reasons people need to do this is if they have a dependency on a

pre-v4 IJW assembly. By default, we can’t allow those to load into v4*. Putting this

attribute in your config allows this to happen.

Why don’t we make this the default behavior? You might argue that this behavior is

more compatible, and makes porting code from previous versions much easier. If

you’ll recall, this can’t be the default behavior because it would make installation of

v4 impactful, which can break existing apps installed on your machine.

Well, why don’t we make this the default behavior for v4 managed apps? Well, that

is precisely the behavior we had for beta 1. As we started trying to explain the

behavior to people, we found it was very difficult to explain how these legacy

codepaths worked. We ultimately decided that making the behavior consistent was

better. The example that ultimately convinced me we had made the right choice

was that the behavior of a library would change based on whether it was hosted by

a native process or a managed one. That seemed really bad to me.

You might say, “Why shouldn’t I just set this for every app I have?” Well, the

downside of this attribute is that it turns off in-proc SxS with pre-v4 runtimes. It

locks them out of the process. This may not matter to your scenario. If you look at

some of the runtime tools, they are using this attribute. Even Visual Studio uses this

attribute. Don’t just blindly use it though. If you' find yourself needing it in

something other than a migration aid, or for loading pre-v4 mixed-mode assemblies

(which we hope becomes more rare moving forward as people start updating the

interesting mixed-mode binaries out there), I’d like to know about it. Leave me a

comment!

Hopefully, you’ve got a better handle on exactly what this attribute means, and can

make a more informed decision about when it is appropriate to use.

*There are many engineering challenges around in-proc SxS and IJW assemblies.

Currently, pre-v4 IJW assemblies can only load into the runtime that is associated

with the “legacy shim APIs”. But any given IJW assembly (regardless of version)

may only be loaded into a single runtime per process at this time.

CLR | Software Development | Technical

posted on Freitag, 12. März 2010 19:14:59 (Pacific Standard Time, UTC-08:00) Kommentare [2]

Verwandte Themen:

Writing a CLR host that uses v4 MetaHost APIs, but can run without v4 installed

Random fun book thing and CLR In-Proc SxS

LinqToStdf now on CodePlex

Image Slicer for Deep Zoom in Silverlight 2

My team is hiring. Come work on the CLR team!

Silverlight limitations and Constrained Callvirt in IL

Seite aufbereitet um Samstag, 8. September 2012 13:57:34 (Pacific Daylight Time, UTC-

07:00)

08.09.12 marklio - What is useLegacyV2RuntimeActivationPolicy for?

3/4www.marklio.com/marklio/PermaLink,guid,ecc34c3c-be44-4422-86b7-900900e451f9.aspx

Februar, 2004 (5)

Januar, 2004 (7)

Dezember, 2003 (7)

November, 2003
(17)

Oktober, 2003 (9)

September, 2003
(10)

August, 2003 (2)

Juli, 2003 (7)

Juni, 2003 (24)

Month View

Kategorien

 Announcements

 Becky

 Cell Phones

 Church

 CLR

 Crazy stuff

 Delegates

 Do it yourself

 FilmProjects

 Fun

 Gripes

 Holidays

 Jenna

 Movies

 New Stuff

 News

 Photography

 Soccer

 Software Development

 Technical

 Vacation

 Video Games

 Wish Lists

 work

Weblog Liste

Disclaimer

The opinions expressed herein

are my own personal opinions

and do not represent my

employer's view in any way.

08.09.12 marklio - What is useLegacyV2RuntimeActivationPolicy for?

4/4www.marklio.com/marklio/PermaLink,guid,ecc34c3c-be44-4422-86b7-900900e451f9.aspx

© Copyright 2012 Mark Miller

Design von James Snape

with newtelligence dasBlog

2.3.9074.18820

Wählen Sie ein Design:

marknew

Anmelden

